Home » Vitamin » Fat soluble vitamins
USA Prohormones
vitamin-a

Fat soluble vitamins

google_plustwitterFacebook

Vitamin A

Vitamin A is a group of unsaturated nutritional organic compounds, that includes retinol, retinal, retinoic acid, and several provitamin A carotenoids, among which beta-carotene is the most important. Vitamin A has multiple functions: it is important for growth and development, for the maintenance of the immune system and good vision. Vitamin A is needed by the retina of the eye in the form of retinal, which combines with protein opsin to form rhodopsin, the light-absorbing molecule necessary for both low-light (scotopic vision) and color vision. Vitamin A also functions in a very different role as retinoic acid (an irreversibly oxidized form of retinol), which is an important hormone-like growth factor for epithelial and other cells. In foods of animal origin, the major form of vitamin A is an ester, primarily retinyl palmitate, which is converted to retinol (chemically an alcohol) in the small intestine. The retinol form functions as a storage form of the vitamin, and can be converted to and from its visually active aldehyde form, retinal. Retinol, the form of vitamin A absorbed when eating animal food sources, is a yellow, fat-soluble substance. Since the pure alcohol form is unstable, the vitamin is found in tissues in a form of retinyl ester. It is also commercially produced and administered as esters such as retinyl acetate or palmitate. The carotenes alpha-carotene, beta-carotene, gamma-carotene; and the xanthophyll beta-cryptoxanthin (all of which contain beta-ionone rings), but no other carotenoids, function as provitamin A in herbivores and omnivore animals, which possess the enzyme beta-carotene 15,15′-dioxygenase which cleaves beta-carotene in the intestinal mucosa and converts it to retinol.[8] In general, carnivores are poor converters of ionone-containing carotenoids, and pure carnivores such as cats and ferrets lack beta-carotene 15,15′-dioxygenase and cannot convert any carotenoids to retinal (resulting in none of the carotenoids being forms of vitamin A for these species).

Vitamin A deficiency can occur as either a primary or a secondary deficiency

  • A primary vitamin A deficiency occurs among children and adults who do not consume an adequate intake of provitamin A carotenoids from fruits and vegetables or preformed vitamin A from animal and dairy products. Early weaning from breastmilk can also increase the risk of vitamin A deficiency.
  • Secondary vitamin A deficiency is associated with chronic malabsorption of lipids, impaired bile production and release, and chronic exposure to oxidants, such as cigarette smoke, and chronic alcoholism. Vitamin A is a fat soluble vitamin and depends on micellar solubilization for dispersion into the small intestine, which results in poor use of vitamin A from low-fat diets. Zinc deficiency can also impair absorption, transport, and metabolism of vitamin A because it is essential for the synthesis of the vitamin A transport proteins and as the cofactor in conversion of retinol to retinal. In malnourished populations, common low intakes of vitamin A and zinc increase the severity of vitamin A deficiency and lead physiological signs and symptoms of deficiency.

Since vitamin A is fat-soluble, disposing of any excesses taken in through diet takes much longer than with water-soluble B vitamins and vitamin C. This allows for toxic levels of vitamin A to accumulate. In general, acute toxicity occurs at doses of 25,000 IU/kg of body weight, with chronic toxicity occurring at 4,000 IU/kg of body weight daily for 6–15 months. However, liver toxicities can occur at levels as low as 15,000 IU (4500 micrograms) per day to 1.4 million IU per day, with an average daily toxic dose of 120,000 IU per day, particularly with excessive consumption of alcohol .[citation needed] In people with renal failure, 4000 IU can cause substantial damage. Children can reach toxic levels at 1,500 IU/kg of body weight.

Rda: 900µg

vitamin A

Vitamin D

Vitamin D refers to a group of fat-soluble secosteroids responsible for enhancing intestinal absorption of calcium, iron, magnesium, phosphate and zinc. In humans, the most important compounds in this group are vitamin D3 (also known as cholecalciferol) and vitamin D2 (ergocalciferol). Cholecalciferol and ergocalciferol can be ingested from the diet and from supplements. The body can also synthesize vitamin D (specifically cholecalciferol) in the skin, from cholesterol, when sun exposure is adequate (hence its nickname, the “sunshine vitamin”). Synthesis from exposure to sunlight and intake from the diet generally contribute to the maintenance of adequate serum concentrations. Evidence indicates the synthesis of vitamin D from sun exposure is regulated by a negative feedback loop that prevents toxicity, but because of uncertainty about the cancer risk from sunlight, no recommendations are issued by the Institute of Medicine, USA, for the amount of sun exposure required to meet vitamin D requirements. Accordingly, the Dietary Reference Intake for vitamin D assumes no synthesis occurs and all of a person’s vitamin D is from food intake, although that will rarely occur in practice. As vitamin D is synthesized in adequate amounts by most mammals exposed to sunlight, it is not strictly a vitamin, and may be considered a hormone as its synthesis and activity occur in different locations. Its discovery was due to effort to find the dietary substance lacking in rickets (the childhood form of osteomalacia). One of the most important roles of vitamin D is to maintain skeletal calcium balance by promoting calcium absorption in the intestines, promoting bone resorption by increasing osteoclast number, maintaining calcium and phosphate levels for bone formation, and allowing proper functioning of parathyroid hormone to maintain serum calcium levels. Vitamin D deficiency can result in lower bone mineral density and an increased risk of reduced bone density (osteoporosis) or bone fracture because a lack of vitamin D alters mineral metabolism in the body. Thus, although it may initially appear paradoxical, vitamin D is also critical for bone remodeling through its role as a potent stimulator of bone resorption. Different institutions propose different recommendations concerning daily amounts of the vitamin. Commonly recommended daily intake of vitamin D is not sufficient if sunlight exposure is limited.

Rda: 15µg

vitamin D2

Vitamin E

Vitamin E refers to a group of ten lipid-soluble compounds that include both tocopherols and tocotrienols. Of the many different forms of vitamin E, γ-tocopherol is the most common in the North American diet. γ-Tocopherol can be found in corn oil, soybean oil, margarine, and dressings. α-tocopherol, the most biologically active form of vitamin E, is the second-most common form of vitamin E in the diet. This variant can be found most abundantly in wheat germ oil, sunflower, and safflower oils. As a fat-soluble antioxidant, it stops the production of reactive oxygen species formed when fat undergoes oxidation. Regular consumption of more than 1,000 mg (1,500 IU) of tocopherols per day may be expected to cause Hypervitaminosis E, with an associated risk of vitamin K deficiency and consequently of bleeding problems. Vitamin E has many biological functions, the antioxidant function being the most important and best known. Other functions include enzymatic activities, gene expression, and neurological function(s). The most important function of vitamin E has been suggested to be in cell signaling (and it may not have a significant role in antioxidant metabolism).

Vitamin E deficiency is rare and is almost never caused by a poor diet. Instead, there are three specific situations when a vitamin E deficiency is likely to occur:

  • Premature, very low birth weight infants – birth weights less than 1500 grams, or 3.5 pounds. A neonatologist, a pediatrician specializing in the care of newborns, typically evaluates the nutritional needs of premature infants.
  • Rare disorders of fat metabolism – There is a rare genetic condition termed isolated vitamin E deficiency or ataxia with isolated with vitamin E deficiency, caused by mutations in the gene for the tocopherol transfer protein.[6] These individuals have an extremely poor capacity to absorb vitamin E and develop neurological complications that are reversed by high doses of vitamin E.
  • Fat malabsorption – Some dietary fat is needed for the absorption of vitamin E from the gastrointestinal tract. Anyone diagnosed with cystic fibrosis, individuals who have had part or all of their stomach removed or who have had a gastric bypass, and individuals with malabsorptive problems such as Crohn’s disease, liver disease or pancreatic insufficiency may not absorb fat (people who cannot absorb fat often pass greasy stools or have chronic diarrhea and bloating). Abetalipoproteinemia is a rare inherited disorder of fat metabolism that results in poor absorption of dietary fat and vitamin E. The vitamin E deficiency associated with this disease causes problems such as poor transmission of nerve impulses, muscle weakness, and degeneration of the retina that can cause blindness.

Rda: 15µg

vitamin E

Vitamin K

Vitamin K is a group of structurally similar, fat-soluble vitamins the human body needs for complete synthesis of certain proteins that are required for blood coagulation, and also certain proteins that the body uses to manipulate binding of calcium in bone and other tissues. The vitamin K-related modification of the proteins allows them to bind calcium ions, which they cannot do otherwise. Without vitamin K, blood coagulation is seriously impaired, and uncontrolled bleeding occurs. Low levels of vitamin K also weaken bones and promote calcification of arteries and other soft tissues.

Vitamin K1, also known as phylloquinone, phytomenadione, or phytonadione, is synthesized by plants, and is found in highest amounts in green leafy vegetables because it is directly involved in photosynthesis. It may be thought of as the “plant” form of vitamin K.

Vitamin K2, the main storage form in animals, has several subtypes, which differ in isoprenoid chain length. These vitamin K2 homologues are called menaquinones, and are characterized by the number of isoprenoid residues in their side chains.

Average diets are usually not lacking in vitamin K, and primary deficiency is rare in healthy adults. Newborn infants are at an increased risk of deficiency. Other populations with an increased prevalence of vitamin K deficiency include those who suffer from liver damage or disease (e.g. alcoholics), cystic fibrosis, or inflammatory bowel diseases, or have recently had abdominal surgeries. Secondary vitamin K deficiency can occur in bulimics, those on stringent diets, and those taking anticoagulants. Other drugs associated with vitamin K deficiency include salicylates, barbiturates, and cefamandole, although the mechanisms are still unknown. Vitamin K1 deficiency can result in coagulopathy, a bleeding disorder. Symptoms of K1 deficiency include anemia, bruising, and bleeding of the gums or nose in both sexes, and heavy menstrual bleeding in women. Osteoporosis and coronary heart disease are strongly associated with lower levels of K2 (menaquinone). Vitamin K2 (MK-7) deficiency is also related to severe aortic calcification and all-cause mortality. Menaquinone is not inhibited by salicylates as happens with K1, so menaquinone supplementation can alleviate the chronic vitamin K deficiency caused by long-term aspirin use.

Rda: 120µg

buy-uk-prohormones

3 comments

  1. fantastic publish, very informative. I ponder why the other specialists of this sector don’t realize
    this. You should proceed your writing. I am confident, you have a great
    readers’ base already!

  2. Thanks for sharing this blog packed with so many information. Visiting your
    website helped me to get what I was looking for.

  3. Well composed articles like yours renews my faith in today’s writers.

    You’ve written information I can ultimately agree on and
    utilize. Thank you for sharing.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

Please enter a CAPTCHA value * Time limit is exhausted. Please reload CAPTCHA.